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Using the trace mapping and the reduced trace mapping associated with a sub- 
stitution, one obtaines the spectral properties of one-dimensional Schr6dinger 
operators of the form H= --A + V on 12(7/), where A is the discrete Laplacian 
and V is a diagonal operator with elements derived from a substitution rule. In 
particular, the reduced trace mapping is closely related to the leading term of 
the original trace mapping. In this paper, the explicit expression of the leading 
term is given and its properties are discussed. 
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1. I N T R O D U C T I O N  

Since the discovery of quasicrystals  by Shechtman et  al. ll6) many authors  
have invest igated nonper iodic  ordered  chains of a toms  generated by a sub- 
st i tut ion rule t6) act ing on a finite a lphabet ,  with each letter representing 
either an a tom or  an interval between two neighbor ing a toms (see, in par-  
ticular, refs. 7, 17, and  18 and references therein). 

Various  physical  propert ies  of such systems have been obta ined  in a 
dynamica l  map  approach  leading to a trace map  ~9-jl'13) for a number  of 
cases, including the Fibonacci  chain, T h u e - M o r s e ,  12~ per iod-doubl ing,  ~4~ 
circle and ternary  non-Piso t  sequencestS~: spectral  propert ies  (scaling, 
critical effects, etc.), wave functions ( local izat ion and optic al propert ies) ,  ~3~ 
latt ice dynamica l  proper t ies  (phonons) ,  t r anspor t  proper t ies  (resistance), ~8~ 
and structure factor (x-ray diffraction). ~2~ 

To determine explicitly the trace is difficult in the general  case, since 
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it involves the iteration of a polynomial mapping from R 3 to R 3 for sub- 
stitution with two letters. The substitutions of two letters are particularly 
important, because of their special properties and the existence of a recur- 
sion formula of the trace of certain products of transfer matrices. I'~ 
Recently an important tool was introduced by Bovier and Ghez, tSI who 
considered a reduced trace map in order to derive spectral properties of a 
one-dimensional Schr6dinger operator 

H = - A + V  on lZ(Z) 

where A is the discrete Laplacian and V is a diagonal operator whose 
elements V,, are obtained from a substitution rule. In the two-letter case the 
reduced map leads to the leading terms of the original trace map. 

The derivation of such leading terms is precisely the aim of this note. 
The leading term of a polynomial can offer much important information on 
it (see, e.g., ref. 15). 

The article is organized as follows: In Section 2 we recall some defini- 
tions and introduce the notions of width and negative subword of a 
reduced word we F. Section 3 is devoted to the calculation of the leading 
term of the polynomial Trff(w) (the trace of the product of matrices 
associated with w). We find that the leading term is determined completely 
by the combinatorial properties of w (its width, its length, and the set of 
its negative subwords). In Section 4 we introduce the connection coefficient 
6(w, u) of two words w and u and we study its properties. With these 
properties and the results of Section 3 we determine the leading term of 
the trace mapping defined by a substitution, and then give the recurrence 
formula for the degree of the nth iteration of the trace polynomial. As we 
shall see, the combinatorial properties of the substitution still play an 
essential role. Some consequences are given and some examples are studied. 

2. P R E L I M I N A R Y :  D E F I N I T I O N S  A N D  N O T A T I O N S  

Let a = { a , b }  be a two-letter alphabet, tq* be the semigroup 
generated by ~ ,  and F be the free group generated by ~ .  An element of 
F is also called a word. A word w is said to be reduced if there is no can- 
cellation of letters in w, and Iwl denotes the number of the letters of w. 

Let SL2(C) be the unimodular group over C. Let ~b be a 
homomorphism from F to SL2(C). Evidently, the restriction of ~b on ~ *  is 
a homomorphism of the monoid ~*.  

We write x = Tr ~b(a), y = Tr ~(b), and z = Tr ~b(ab), where Tr stands 
for the trace; then Tr ~b(w) is a polynomial of x, y, and z with coefficients 
in Z. III 
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Let w = x ~ x 2 . . - x k � 9  (x i~ (7 )  be a redcuced word; if x l x 2 . . . x k x t  is 
also reduced, then w is called cyclic reduced. For  any w �9 F, we know easily 
that there exists a cyclic reduced word u such that w = v - l u v  for some v �9 F. 
We call u a cyclic reduced componen t  of w. It is clear that Tr  ~b(w)= 
Tr r  and consequently we only need to consider the cyclic reduced 
words. In the remainder  of the paper,  unless stated otherwise, all the words 
will be considered as cyclic reduced. In particular, if w � 9  then w is 
always cyclic reduced. 

A subword xixi+ ~ ' " X i  of w = x t x 2 . .  "Xk is called a negative subword 
in w if the letters x~,x~+~ ..... .,cj_~, x j � 9  - t ,  and x ~ _ l , X i + l ~  (where 
x~ = Xk + s by convention).  Moreover ,  if x~_ 1 4: xj + 1 (which implies xi 4: xj), 
then the negative subword is called even. 

Let ~(w), fl(w) denote, respectively, the number  of a +- 1, b-+l appearing 
in w. If w � 9  then evidently Iwl = ~ ( w ) + f l ( w ) .  

The number  of negative subwords in w is denoted by v(w); in par-  
ticular, if every letter in w belongs to ~ -  ~, we define v(w) = 0. 

We call e(w) the number  of even negative subwords of w. The number  
of a+-~b • in x l x , _ . . . x k x l  is called the width of w and is denoted by ?(w). 

Example 2.1. Let w = b a - 2 b  ~a2ba-2bab 2a-3b'-ab-3a-2b-2a2b-~. 
A cyclic reduced component  of w is b -  ~a2ba-2bab- 2a- 3b"ab- 3a- 2b- z, 

and a -2, b -2a  -3, b - 3 a - Z b - " b  -1 are the negative subwords in w, 
and b-'-a -3 is even. Thus a ( w ) =  11, f l (w)= 12 (but Iw1=29),  y ( w ) = 6 ,  
v(w) = 3, e(w) = 1. 

Let w = x ~ x z . . . x k � 9  ( x ~ � 9  we call a letter x~ isolated if 
.x-i , = x ~ + j  4:x~. The number  of isolated letters a (resp. b) in w is called 
z(w) [resp. x(b)] .  For  instance, if w = abbabaaba, then l (w)=  1, h ' (w)= 2. 

A substitution a over (2' can be considered as a homomorph i sm of 6l'*, 
and its substitutive matrix is defined by 

M,, "= {ot(a(a)) a(a(b))~ 
" \ / ~ ( a ( a ) )  / ~ ( ~ ( b ) ) ]  

It is readily checked that  

(a(a"(w)), f l ( a " (w) ) ) '=  Mo,(o~(w), f l (w) ) '=  (M,)" (a (w) ,  fl(w))'  (2.1) 

w,~t (resp. wt~,) will denote the first (resp. last) letter of w. 
If p(x,  ),, z) is a polynomial  of variables x, y, and z, its degree will be 

denoted by deg(p)  and its leading term will be denoted by L(p).  Moreover,  
deg,(p)  will denote the degree of p with respect to the variable t. 

Let c �9 F; then, by recurrence, using the Cay ley-Hami l ton  theorem, we 
have for n �9 Z, 

r = p"(u) .  ~(c) - p . _  , (u ) - I  (2:2) 
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where u = T r  ~b(c), I is the identity matrix, and p,,(u) is the Chebychev 
polynomial with 

p~(u)=up,,_ l (u) -  p._ 2(u), 

and 

Thus 

and 

It follows that 

pl(u)~ !, po(u)~O, p_.(u)= -p.(u)  
(2.3) 

deg(p,,(u))= ( n -  l)deg(u) 

Tr ~b(c")= up,,(u)- 2p,,_ ,(u) 

deg(Tr ~(c") ) = n deg(u) 

(2.4) 

(2.5) 

(2.6) 

deg(Tr ~b(w))= Iwl -~(w)  

ProoL We proceed by induction on y(w). When ~,(w)=0, then w=a" 
(or b"). In this case, ~(w)=n, f l(w)=0 [resp. co(w)=0, fl(w)=n], hence 
from (2.7) the assertion is true for ~,(w)= 0. 

In particular, 

3. THE LEADING T E R M  OF THE P O L Y N O M I A L  T r r  

In this section, we wi l l  prove the fo l lowing result: 

T h e o r e m  3.1. Let w~F.  Then the leading term of Tr~b(w) is a 
monomial and 

L ( T r  r  = ( - 1 y ' l " l  x~C"l- ~,,.~ + ,.I,,.~ y t J O , . I -  ~.l,,.~ + , . I , , .~z~. l , , . I -  ,.~,,.~ 

In particular, 

deg(Tr ~b(w)) = ct(w) + fl(w) - ~(w) + v(w) 

To prove this, we need first the following result. 

Proposition 3.2. If w ~ * ,  then 

L(Tr r = x ~ ' ' 1  -~,<,,'1 y ~ l , ' ,  - ~l,, ' ,  z~. , , ' l  

L(Tr ~b(e")) = L(u") (2.7) 
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If y(w)>O,  as for any u, v one has TrO(uv)=Tr#(vu), we may 
suppose that 

w=a"b"-...a'~-'b'% where y=7(w) ,  t~>O 

Now we assume that this proposit ion is true for words w with 7(w) ~< y 
and we shall prove that the conclusion is true for y + 1. It is clear that 

7(wa"b")=),(w)+l, o:(wa"b")=ct(w)+n, fl(wa"b")=fl(w)+m (3.1) 

1. First we consider the case n = m = 1. Let 

W t ~ a tl b t 2 . . ,  a t 2 r - 3 b t 2 z - 2  

Thus 

0~(W) = ~(W') -b t21,_ 1, f l ( W ) = f l ( W ' ) + t 2 ~ ,  , 7(W) = 7 ( W ' )  + 1 

From (2.2) 

O(wab) = q~(w')(p,2;._~(x) #(a)-P,2~. , - l(x)I)  

x (P,2~.(Y) ~b(b) -Pt2~.- , (y)I)  O(ab) 

= P,2;.-,(x)p,,~.(y) ~b(w') ~b((ab) 2) 

- P,2~.- ~(x) P,2~.-,(Y) ~b(w') ~b(a2b) 

-P,2~.-~- l(X) P,2;.(Y) ~b(w') q~(bab) 

+ P,2;.-,-,(x) p,,~._ j(y) qJ(w') O(ab) (3.2) 

By the induction hypothesis and from (2.4), (2.7), (3.1), and (3.2) we have 

L(Tr(p,2~.-,(x) P,2~.-,(Y) ~b(w') ~b(a2b))) 

~X(C~lw')+2)--)'+(t27-1 I)y(t~l,.')+ 1)--7+1t27 2)ZI' 

= x . ~ , , ' ~  - 1' + J y , ~ . ' )  - ~' - I z r ( 3 . 3 )  

L(Tr(p,:~_,_ )(x) P,2~,(Y) O(w') #(bab))) 
: X(Ct(,,")+ 1)- ' :+ (t27-t- 2) y(fl(w')+ 2)- y+ (t27-- 1)21' 

= x  ~c"') ~' '),BI")-~'+Iz~' (3.4) 

L(Tr(p,2:._ ~_ ,(x) p,~_ ,(y) qk(w') O(ab))) 
X(~(.") + I ) -- ~' + (t27- I -- 2) y(fl(,, ') + I ) -- I' + (t27 -- 2)Z7 

= x , O , ' )  - ~ - ,  yt~l.') - 1 ' - ,  z ~' ( 3 . 5 )  
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On the other  hand,  

ck(w'(ab) z) = O(w')(zfb(ab) - I) = zfb(w'ab) - fb(w') 

Thus 

Wen and Wen 

L(Tr(p,.,~._,(x) p,,.~.fb(y)(w') ~b((ab)2))) 

~ X ( ~ ( w '  } + 1 ) - -  )' + ( t~..., I - - I  } y ( f l (  ~"  1 + 1 1  --  "~' + ( t~ . . - -  1 ~.~' + 1 . ,  . 

= xCaO,.~ + ,~- i;.+ 1 ~ y~tJo,.~ + ~ i -  it.+ ~ Iz~. + 1 (3.6) 

So that  from the equalit ies above,  we have 

L(Trq~(wab))=x~'l"'l+ll-I;'+l~y~tJ~"'l+l~-I;'+llz ;'+l (3.7) 

2. F o r  the general case of m, n, by (2.2), we have 

r  = O(w)(p,,(x) r  - p,,_ ,(x) I)(p, , , (y)  ~b(b) - p . . . .  , (y )  I) 

= p,,(x) Pro(Y) r  p,,(x) p .... l(Y) r 

- p , _ , ( X )  pm(y) fb(wb)+ p , ,_ , (x )  p , , _ l ( y ) r  (3.8) 

By means of the hypothesis  of induct ion and step 1, we obta in  finally that  

L(Yr~b(wa"b"))=x~l"'~+"l-c"+l~y~l~"'~+"l-~;'+l~z ;'+l (3.9) 

We have thus proved this propos i t ion  by induction.  

P r o p o s i t i o n  3 .3 .  Let we6'(*.  We have 

deg,.(Tr ~b(w)) = ~(w) - x(w) 

deg , (Tr  r  = ~(w) - t(w) 

deg : (Tr  ~b(w)) = ~,(w) 

The proof  of this propos i t ion  is similar to that  of Propos i t ion  3.2. 
Fur thermore ,  we can also determine the respective leading term. 

Proof  of  Theorem 3.1. We proceed by induct ion on v ( w ) =  v. The 
case of v(w)= 0 is just  Propos i t ion  3.2. Assume that  this theorem is true for 
v(w) ~< v - 1 and we consider  the case of v(w) = v >/1. Hence, there exists at 
least a negative subword  u in w, and,  without  changing the trace, w can be 
rewrit ten as uv, where v is not  the empty  word. Notice  that  
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0[(/~--  1 ) = 0~(U),  

Now, from (2.2) 
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and 

q)(u)= Tr (b(u-l)i_(~(u l) 

so we have 

(~(w)=q~(uv)=(Tr (~(u l ) I - ~ b ( u  l))(~(v)=.(Tr (~(u-'))(~(v)-(~(u ')~b(v) 

i .e. ,  

Tr  ~b(w) = (Tr ~b(u - ' ))(Tr ~b(v)) - Tr  ~b(u - Iv )  (3.15) 

I. If u is not even, then by the definition, 

/'~fir~l = lglas It z~z afirs  ' = a las  ' 

which implies that 

~,(u-]) + 7(v) = 7 (u - Iv )  - 1 = 7(w) - 1 (3.16) 

e(v)=e(u lv)=e(w) (3.17) 

Thus, from (3.10)-(3.17) and Proposi t ion 3.2, 

L(Tr  ~b(u- l ) ) (Tr  ~b(v)) 

= x ~ o , )  - 7(,,l V/m,I  - ; ' ( u ) 2 " , ' l u l  ( _ 1 ) E I " ) X ~ ( t ' I  --  ;'C~'I + , ' l~' l  ) , l ~ ( v l  - ; '~, ')  + , 'lt 'l . ; ' ( ~ ' )  - , ' ( v )  

= ( - 1 ) ~ " ) x  = ( ' t -  ;'("~ + ,.(.,i . v~ . , . ) -  ~..,,) + ,,.,.~ z ; . ( . , i -  ,.(,,.I 

On the other hand, 

L(Tr  ~b(u - Iv ) )  

- ( - 1 ) ~ ( ' - ' " ) x  a l " -  '*') - ~ ' ' - * " )  + " ' -  '*') ) . ,~1 " -  '''1 - ~ ' ' -  ' ' ' )  + " ( " - ' v ) z ~ ' ( " -  ' ' ' )  - * ' ( " - , , , i  

= ( - 1 ) * ( ' ) x  : * ( " ) -  ; ' ( ' * ) + * ' ( " ) -  l V f l (w) -  7( . ' )+  v (w) -  I z T ( w ) -  v( , . )  + l 

p(u -  ') =/~(u), ~,(u- ')  = 3,(u) (3.10) 

~ ( w )  = ~ ( u - I v )  = c((u)  + ~ ( v )  ( 3 . 1 1 )  

/~(w) = / ~ ( u - I v )  = / / (u )  +/~(v) (3.12) 

7(w) = ~ '(u-Iv) (3.13) 

v(v) = v(u- Iv) = v(w) - 1 (3.14) 
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By comparing the two formulas above, we obtain 

deg(L(Tr ~(u- l )  Tr ~(v))) > deg(L(Tr ~(u-Iv)))  

Therefore 

L(Tr ~(w)) = L(Tr ~(u - l )  Tr ~(v)) 

= ( - 1 ) ' : " ) x  ~ - ~'""~ + " " )  y l , , , . )  - ; , . , . ~  + ,.o,.~ .;,.,.~ - ,..,.~ 

2. If u is even, then 

u ,~ ,  = v,.~, ~ u &  ~, = v.~,  

so that 

and 

7 ( u - ' ) + y ( v ) = y ( u - ' u ) +  1 =y(w) 

e(v)=e(u t v )=e (w) - - I  

Wen and Wen  

(3.18) 

(3.19) 

deg(L(Tr ~b(u 1) Tr ~b(v))) < deg(L(Tr qt(u-Iv))) 

We obtain also that 

L(Tr ~b(w)) = L( - (Tr ~b(u-Iv))) 

= ( - -  1 ) ~ " " ) x  : 'u' '~ - ,,,u,,) + , . . , .) 3,#o,.) ;,(,,.) + , , o , , ) z ~ . l . . ) -  ,.i,,,) 

Thus using steps I and 2, one finishes the reasoning by induction. 
Evidently, decreasing a a+~b • in w means decreasing at least a a • 

(or b• Let u be a subword of w; it is easy to see that 7 ( w ) - v ( w ) < .  

and 

In the same way as in step 1, and from (3.18) and (3.197, one has 

L(Tr ~(u l))(Tr ~(v)) 

= X: t iu )  ./(u))~f;(u~-.`~"~.`~u)(-~)c(`~}X:~r)-`~r)+`~v)~r~-7~v)+`~I~)7-`/~v)-~(v) 
= ( - -  l ) E ( , , . )  - I X ~ ( , , . )  - " / t - ' )  + , ' ( , , . )  - I ) , l ! b , . }  - ";(, , ' )  + , . ( w )  - S Z ) . i w }  - , ' ( , , ' )  + I 

L(Tr ~b(u-Iv)) 

= ( - -  1 ) . ' . u , - ' , ' ~ x ~ U ,  - '.'~ - ~ ' ( , , - %  + , , I , , -~, ,~ y /~ l , , - ~ . , ~  - ; . . , -~, . )  + , , . , - ' , ,  ~ z~, l , , - ' , .~ - , , , ,-~,,~ 

= ( _ l ) ~ ( , , . I  IX~,Iw)-,,,O,.)+vI,,.)ylll,,) 7(wl+,,I,,.)ZT(,,.I ,..o,.) 
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Iwl - lu l ,  i.e., I w l - ~ ' ( w ) ~ l u l - 3 ' ( u ) .  On the other hand, it is clear that 
v(w)  >1 v(u). So by Theorem 3.1, we have the inequality 

deg(Tr ~b(w)) >~ deg(Tr ~b(u)) 

We have the following result. 

C o r o l l a r y  3.4. The degree of the polynomial Trq~(w) is not 
decreased by eliminating any subword of w. 

Furthermore, we have the following corollaries. 

C o r o l l a r y  3.5. Let w e F .  If w is not the empty word, then 
deg(Tr ~b(w)) > 0. 

C o r o l l a r y 3 . 6 .  Let w E F .  If ~,(w)~>2 and w#(a+-tb+-~)  ' ' , then 
L(Tr ~b(w)) is divisible by .v),z 

R e m a r k .  Let x'),t~z ;' be a monomial of variables x, y, and z; then its 
weight is defined by c~+fl+27. The weight of a polynomial p ( x , y ,  z), 
which is called e)(p), is the maximum of the weights of all its monomials. 
By induction, we can prove the following: 

Proposition 3.7. Let w~F; then 

og(Tr ~(w)) = co(L(Tr ~b(w))) = ~(w) + fl(w) 

In particular, if w ~ ~* ,  then 

co(Tr r = o)(L(Tr ~b(w))) = [w] 

We see that the polynomial Tr O6(w) may take its weight by its leading 
term. 

But in general, the leading term is not the unique term with the above 
property; for example, we have 

Tr q } ( a - I b -  'ab) = x 2 +1, 2 + z 2 - .~vz - 2 

with 
09(7. 2) = o ) ( x y z ) =  co(Tr q}(a- tb  lab)) = 4  

4. THE LEADING TERM AND THE DEGREE OF THE TRACE 
M A P P I N G  POLYNOMIAL  

Throughout this section, we confine ourselves to ~ * .  in this case, any 
word of 6~* is cyclic reduced and it has no negative subword. 
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Let u, v E ~ * ;  we are going to determine the leading term of Tr q~(uv). 
In order to study the relation between the width of uv and that of u and 
v, we define the connection coefficient of u, v, denoted by 6(u, v), as follows: 

&(u, v ) = ~ , ( u ) + ~ , ( v ) - ~ , ( u v )  

Then by Proposit ion 3.2, 

L(Tr r  = L(Tr r �9 L(Tr r �9 ( x y z -  l),~,,.,,i 

and we see that L(Tr qk(uv)) will be determined by 6(u, v). Thus, we first 
study the properties of the connection coefficients. The following result is 
readily checked. 

Lemma 4.1. Let u, ve(~*.  We have 

O 1 if unrs, = u,as, 4 = vnrs, = vtas, 
6(u, v) = 1 if unrst -- vl,~, 4: vn~l = u=,~, 

otherwise 

By Theorem 3.1 and the definition of &, we obtain immediately the 
following result: 

Corollary 4.2. For w, u E ~ * ,  we have: 

(i) L(Yr ~b(wu)) = L(Tr ~b(w)) L(Tr ~b(u)) z '~l''''"~. 

(ii) deg(Yr ~(wu)) = deg(Tr ~b(w)) + deg(Yr ~b(u)) + 6(w, u). 

(iii) If u is a subword of w, then 

L(Tr ~b(u)) ] L(Tr ~b(w)) 

It is convenient to give below some simple formulas which are conse- 
quences of Lemma 4.1. 

Propos i t i on  4.3.  For  w, u e t q * ,  we have the following assertions: 

(i) &(w, u) = a(u, w). 

(ii) 6 (w ,w)=0 .  
(iii) 5(w", u")=&(w, u), m, n~ ~ \ { 0 } .  

(iv) y ( w u ) = 7 ( w u ) .  

(v) ? ( w ' ) = r n ? ( w ) ,  m ~ [ ~ .  

(vi) ~,(w"u") = m'~,(w) + nv(u) - &(w, u), m, n ~ ~ \ { 0 } .  

(vii) If w = u'~v '2 . . .  u'-~-'v '2;*, then 

7 ( w ) =  (t ~ + t3 + . . .  + t2;._ ~ ) ~'(u) + ( t2 + t4 + . . .  + tz~.) ?(v) + v6(u, v) 

Proof .  Assertions (i), (ii) follow immediatly from Lemma 4.1. 
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We have ," - " = "nrs,--Wnrs,' "l~st Wl~s, for m ~ Z \ { 0 } ,  hence (iii). Asser- 
tion (iv) comes from the definition of 6 and (i). Assertion (v) comes from 
the definition of 6 and (ii). By the definition of 6 again, and from (iii), (v), 
we have 

7(wmu ") = y(W')  + ?(U') -- 6(W"', U") = m),(w") + n?(u" ) -- 6(w, u) 

which implies (vi). Finally, (vii) follows from (vi) by induction. 

Let a be a substitution over  ~ .  Define 

6(a) = ~(a(a), a(b)) 

P r o p o s i t i o n  2.4.  Let a be a substitution over 6L We have that for 
U, 1), W ~ (7 /*  : 

(i) r a(v))  = ~5(a) cS(u, v). 

(ii) cS(a") = (6(a))" =: 6"(a). 

(iii) ~,(a(w)) = ~(w) ~,(a(a)) + ~(w) ~(a(b)) + ~(w) 6(a). 

ProoL Part  (i) follows from L e m m a  4.1 by considering all possible 
cases of the first and last letters of the words u, v, a(a), a(b). 

Part  (ii) follows from (i) by induction. Part  (iii) follows from Proposi-  
tion 4.3(iv), (vii). 

T h e o r e m  4.5.  Let a be a substitution over ~ .  Then 

7 ( a " + J ) = ~ ( r r ) ( M " + ~ M " +  .-. + 6 " - ' M  +f i " l )  (4.1) 

where M := M,~, ~5 := 6(a), ~(rr") := (7(a"(a)),  ~,(a"(b))), n E N. 
In particular,  if the matrix M - r is invertible, then 

},(a") = } , ( a ) ( M  - ~ I ) - '  ( M "  - c5"I ) (4 .1 ' )  

ProoL We proceed by induction. This is trival when n = 0. 
Assume by induction that (4.1) is true for n. F rom Proposi t ion 4.4(iii), 

?(a "+ t(a)) = ~,(a(a"(a))) 

= c~(a"(a)) 7(a(a))  + fl(a"(a)) ~(a(b)) + r(rr"(a)) 6(a)  

By the hypothesis of induction and the equality (2.1) we have 

),(a "+ l(a)) = ot(a"(a)) y(a(a)) + fl(a"(a)) ),(a(b)) + ? ( a ' ( a ) )  r 

=~;(a)M"(1,  O ) ' + 7 ( a ) ( M " - '  + 6 M " - 2  + ..- 

+ 6 " - 2 M  + ~ " - ' I )  6(a) ( l ,  0) '  

= } , ( a ) ( M " + ~ M ' +  .. .  + 6 " - ~ M  + 6 " I ) ( 1 , 0 ) '  (4.2) 
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In the same way, 

y(a"+~(b))=y(cr)(M"+fM"+ ... +6"-~M+6"I)(0 ,  1)' (4.3) 

Thus (4.1) follows from (4.2) and (4.3) and the assertion is true for every 
n~I~. 

KeeP the notations of Section 3. Let ~b~Hom(F, SL2(C)) as above; 
then ~b is uniquely determined by the couple (~b(a), ~b(b)) of elements of 
SL2(C). Now define a mapping T: Horn(F, SL2(C)) ~ C 3, T(~b) = (Tr ~b(a), 
Tr~b(b), Tr~b(ab)). By ref. 1, for any a~End(F) ,  there is a unique 
~o~ (7/[x, y, z])  3 such that 

T ( ~  o ~r) = ~ o ( T ( ~ ) )  

The polynomial mapping ~o is called the trace mapping associated 
with a. 

The following theorem is a direct corollary of Proposition 3.2, 
Proposition 4.4, and Theorem 4.5. 

T h e o r e m  4.6. Let a be a substitution over ~ with the trace 
mapping qs ,  and let 

~ , ,  = ( ~  ..... ~,,h, ~,,ob) 

be the nth iteration of q~o. Let x = Tr $(a), y = T r  ~b(b), z = Tr ~b(ab); then 

L( ci>,,,.)= x,,C,,,,.,.,-~ y,,(,,.,~,.,.~ z,,~ ....... 

where ce {a, b, ab} and e(n, c, t) are determined by the following formulas 
( te  {x, y,z}): 

e(n,a,x)  e (n ,b ,x ) )  ( { )  
e(n,a,y) e(n,b,y) = M ~ -  7(or") 

(e(n, a, z), e(n, b, z)) = y(tr") 

(e(n, ab, x), e(n, ab, y))' = ((Mo)" - e(n, ab, z)I)(1, 1 )' 

e(n, ab, z) = y(tr")( 1, 1 )' - 6"(tr) 

E x a m p l e  4.1. Fibonacci substitution: tr(a) =ab, tr(b)= a. Let 
{f(n)},,>~o be the Fibonacci sequence, that is, f ( - 1 ) = O ,  f ( O ) = l ,  
f ( n ) = f ( n - 1 ) + f ( n - 2 )  (n>~l). It is well known that la"(a)l=f(n), 
l a " ( b ) l = f ( n - l ) ;  since a(a)=tr2(b), we have ot(tr"(a))=f(n-1) and 
ct(a"(b)) = f (n  - 2). 
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Notice that ~ ( a ) =  (1, 0), 3(a(a), ~ ( b ) ) = 0 ;  then from Theorem 4.5 

~,(a") = (1, 0)(M,,) "-~ = ( ]a" - l (a ) [ ,  l a " - ~ ( b ) l )  = ( f ( n  - 1), f ( n  - 2)) 

Hence 

L(~t,u) = x f(") -f(" - 1 | y.f(,,  - i) - r ( t ,  l l} z f ( n  - -  I } = x f ( n  - 2 )  Z f i n  - 1 } 

L(qS,b) = x / ~ "  - 31 z r~ - Z~(x f l  - z~ = y by convention) 

L(~,,,b ) = x t l ,  _ n ~ zZ~,,i 

In particular, 

deg(Tr ~b(a"(a))) = f (n ) ,  deg(Yr ~b(a"(b))) = f ( n  - 1) 

deg(Yr ~b(a"(ab))) = f ( n  + 1) 

are still the terms of the Fibonacci sequence; thus the sequence 
{deg Tr  ~b(a"(a))},,~>o is still the Fibonacci sequence. 

E x a m p l e  4.2.  (See also ref. 2.) Thue-Morse  substitution: a ( a ) =  ab,  

a ( b ) = b a .  We have then 
n n M~=2 M~,and 

is invertible, so by (4.1') 

~,(a") = (1, 1 ) ( 2  l 

~,(a)= (1,1),  6 ( a ( a ) , a ( b ) ) = - l .  In this case, 

'(2 l(i :) i-,/,I) 
_ ( 2 " - -  ( , 2 " - - ( - - 1 ) " )  

Thus, by Theorem 4.6, 

e ( n ,  a, x )  = e (n ,  a, y )  = e (n ,  b, x )  = e ( n ,  b, y )  = e ( n  - 1, a,  z )  

e(  n - 1, b, z) = e( n - 1, ab ,  x )  = e( n - 1, ab ,  y )  

= ( 2 "  I -  ( -  1)"-  1)/3 

e ( n ,  ab ,  -) = (2 ''+ t _ ( _ 1 )"+ J)/3 = deg(Lq),o) 

= deg(LqS,,~) = deg(Lq~,,_ l l,b) 

822/75/3-4-19 
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More generally, for the substitution a(a)=aPb ~, tr(b)=bUa p, ~(cr)= (1, 1), 
6(a) = -1 ,  

M , , = ( ~  ~) ,  M ~  1 q+lP ) 

1 ((p+q)"+(p-q)" (p+q)"-(p-q)"~ 
M~,=~\(p+q),,_(p_q),, (P+q)"+(P-q)"J 

,(cr,,)=(l,l)(Pq 1 P )-' q + l  (M~'-  ( -  1)"I) 

( (p  + q ) " - ( - 1 ) "  (p + q)"- (-1)") 
= p + q + l  ' p ~ q + l  

(p + q ) " -  ( -  1)" 
deg q~,,~ = (p + q)" - deg q~,,b 

p + q + l  

Let a be a substitution over a ,  ~o be the corresponding trace 
mapping polynomial, and 2 = x  2 +y2 +z 2_xyz_4. To characterize the 
invariant domain by ~ ,  Peyri6re has shown the following factsl~4~: 

(i) There exists a polynomial Q,,e 77[x, y, z], such that 

2o q)o = 2. Q~ (4.4) 

(ii) If a is invertible, then Q~ = 1. 

Now we will determine the degree of Q,, by 6(a). From Theorem 4.6 
and (4.4), a careful calculation, of which we omit the details, gives the 
following result. 

T h e o r e m  4.7. Let a be a substitution over ~ .  We have: 

(i) If 6(a) = -1 ,  then deg(Q,) = 2 deg(q)~b) - 3 > 0. 

(ii) If 3(a)= 1, then 

deg(Q~ ) = deg(qS,) + deg(~b) + deg(q~,,h) -- 3 > 0. 

(iii) If 3 (a )=0 ,  then 

deg(Q~) < 2 deg(q~h) -- 3 = d e g ( ~ )  + deg(q~b) + deg(q~b) -- 3. 

Coro l l a ry  4.8. If a is invertible, then 6(a(a), a(b)) = 0. 

In this case, Qo = 1 implies that deg(Qo)= 0, and the result comes by 
Theorem 4.7. 
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